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13TH ORDER RESONANCE FROM NAVY TRACKING ON A

DIADEME 2 FRAGMENT

C. A. Wagner

Geodynamics Branch

Earth Survey Applications Division

ABSTRACT

A strong constraint on 13th order (odd degree) terms in the geopotential has

been derived from Navy tracking on a DIADEME 2 fragment (1967-14F). This

object (perigee height: 580km, orbit inclination: 38. 90) is presently decaying

slowly through perfect commensurability with these terms. The resonance

forces will increase its inclination by 0. 020 when the passage is complete by

late 1974. The constraint (lumped harmonics), derived by adjustment of a pair

of harmonic coefficients to the Navy inclination data (principally) is:

10 9 (14.8 ± 0. 8, 48.3 ± 0.7) = 0. 023(C,S)13 ,13 - 0.172(C,S) 15 ,13 + 0.505(C,S)17 ,13

-0.884(C,S) 19 ,13 + (C,S) 2 1 ,13 - 0.673(C,S) 23 ,13 + 0.099(C,S) 25 ,13 + 0.295(C,S) 27 ,13

-0.279(C,S) 29 ,13 + 0.018(C,S) 3 1,13 + . . .

There should be a significant contribution to this result from terms as high as

29th degree. But current geopotential solutions (for 13th order terms) to this

degree are about 20% in error when judged by this independent data.
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13TH ORDER RESONANCE FROM NAVY TRACKING ON A

DIADEME 2 FRAGMENT

INTRODUCTION

Among the thousands of Earth satellites launched in the past 15 years, hun-

dreds must have suffered or will suffer measurable effects from poorly known

resonances with the Earth's geopotential (King-Hele, 1973a; Gabbard and

Wackernagel, 1971). But less than 50 of these objects have actually been used

geodetically. The major difficulty of course is the lack of adequate tracking for

the majority of the objects which are (or were) rocket bodies or fragments

(debris) of larger satellites. However, in the case of deep resonance or close

commensurability to the Earth's rotation, the effects are so large that even

tracking with crude instruments can reveal them (King-Hele, 1973b). Many of

the observations made in support of the tracking on decaying 15th order resonant

orbits were accomplished with amateur observers using binoculars and

stopwatches.

In these deep resonances the change of the inclination of the orbit is of the

order of 0. 010. To achieve overall inclination accuracies of a tenth of this fig-

ure, a topocentric angle good to only about a minute of arc is necessary. King-

Hele's results were often much better than this, but his amateurs were backed

up by more precise camera observations. (See also Winterbottom and King-

Hele, 1974.) In addition, King-Hele's group has utilized minute-of-arc data

from the U.S. Navy skin track Naval Space Surveillance (NAVSPASUR) system,
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of which there is a great abundance on low altitude satellites. In fact since

1972, the NAVSPASUR data and mean elements derived from them (by the Navy)

dominate the orbits used in the 15th order resonance analysis (i. e., King-Hele

and Walker, 1972). This data consists of (direction cosine) pointing angles

from a fence of receiving stations across the United States. The signals are

reflections from the satellite of a continuous high power radar fan illuminating

space across the U. S. at about 280 latitude. The system has tracked objects as

high as 18, 000 km altitude. Providing the inclination of the orbit is greater than

about 280 and the object is large enough to be tracked, data on each revolution

will be received.

The existence of this good data on a large number of objects opens up the

possibility of examining in detail all the deep geopotential resonances besides

the one's of 15th order. In this study, the Navy's own mean elements were

used directly. They proved sufficiently accurate to reveal the strong effect on

the inclination of the decaying (13 revolutions/day) orbit of a DIADEME 2

fragment (1967-14F).

ANALYSIS

In Figure 1, the Navy Mean Inclinations are shown from February 1972 to

January 1974. Also in Figure 1 is a plot of the mean (primary) resonant longi-

tude rate for this 13 revs/day orbit:

013,0 = w+ M + 13 ( 2- O),

where o, M and 2 are the orbit's argument of perigee, mean anomaly and right

ascension of the ascending node, and 6 is the Earth's rotation rate.
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Figure 1. U. S. Navy Orbit Inclinations for 1967-14F
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It is recalled that the longitude rates which determine the frequency of gravi-

tational perturbations on an orbit in Kaula's development of the geopotential

(Kaula, 1966; especially p. 40, 49 and 55) are given as:

4 = (k- 2p) + (9- 2p + q) M + m (& -6),

where 2 and m are the degree and order of a geopotential harmonic, and p and q

are additional indices related to the inclination and eccentricity of the orbit.

The resonances (4 = 0, m # 0) will occur for (2 - 2 p + q) M close to m6,

since c and f2 are small. The primary resonances (strongest) occur when 2 -

2 p + q = 1, since then m will be minimum, the closest integer to M in

revolutions/day. Secondary resonances (sub harmonics) for a given Ml (near a

rational number of revs /day) will occur for 2 - 2p + q = 2, 3, 4 . . . , but in

any case all the resonant longitude rates can be characterized by the order m

and the q index, by writing

m,q = -q . + (2~- 2p + q) (G + M) + m (~ -0).

For a given resonant order m, there will be a series of "side band" resonances

characterized by q around the (generally) dominant one for q = 0. The q = 0

resonance is also the mean of the series since q can take on all positive or

negative integers.

It is seen in Figure 1 that the longitude rate 4 13,0 for 1967-14F goes to

zero over the period of record as the inclination of the orbit suffers a progres-

sive oscillation of increasing period and amplitude. The increasing period

closely matches the period of 1 3,0. There is clearly a strong resonant
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perturbation of this orbit entirely analogous to the decaying 15th order orbits

first analyzed by Gooding (1971) and the 11th order orbit examined by Wagner

(1973).

But there is more significant detail in Figure 1 than resonance. The "raw"

mean inclinations given by the Navy (see also Table 1) are actually Brouwer ele-

ments (determined over independent 7 day arcs) with both short and long period

zonal effects removed (Brouwer, 1959). Only J 2 to J 5 are used in the Navy-

Brouwer model and the coefficients are not up to date. The period of the princi-

pal odd zonal inclination effect (27r/) is 65 days. The amplitude, with the cor-

rect model, is about 0. 0050. The error in the Navy model is certainly seen in

the raw inclination data. But, in addition, there is an 84 day lunar perturbation

with amplitude 0. 0014' which is also observable.

To clarify the quality of this "signal" I have added back the long period zonal

effects used in the Navy-Brouwer model to produce mean elements free of this

bias (also Table 1). Then I compared these (less smooth) mean elements to

values calculated from a trajectory which includes all significant (but nonreso-

nant) long period effects on the orbit, in particular the zonal perturbations from

the Smithsonian (SAO) Standard Earth 2 (Gaposchkin and Lambeck, 1971), radia-

tion pressure, atmospheric drag and direct lunar-solar gravity. The compari-

son (observed minus calculated values) in Figure 2, shows the resonant signal

much more strongly and also reveals what appears to be a much reduced resid-

ual effect due to odd zonal error in the Smithsonian field.
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Figure 2. Resonant Variation of the Inclination for the Orbit of 1967-14F



The residuals in inclination (rms) from this trajectory (and others including

those with resonant effects) are shown in Table 2. The calculated trajectories

were "fit" to the mean element "observations" by differential correction of

initial elements and other model parameters (see i. e. , Morrison, 1970 or

Wagner and Douglas, 1970) under the conditions stated in Table 2. The principal

difficulty in these orbit determinations was in following the mean anomaly of the

satellite which (with a perigee of 580km) underwent fluctuations of tens of de-

grees from drag error. The level of this error was less than 10% after correc-

tion for a single drag coefficient. Yet it was necessary to include additional

accelerations in the semimajor axis and mean anomaly to permit the critical

resonant longitude 13,0 to be calculated to better than 50 (rms). (This error is

consistent with the formal accuracy of the resonance determination. )

A more readily available data source for satellite objects, the North Ameri-

can Air Defense Command's SPADATS elements were also evaluated for 1967-

14F by the same mean element program. (See run 2 of Table 2.) Figure 3

shows the inclination residuals from a nonresonant trajectory with this data over

a somewhat shorter arc in 1972-1973. For most of the period no detail at all

can be seen. At the end of the arc some definition of the resonance appears.

The NORAD-SPADATS data quality is clearly not uniform in this arc. The

small "acceptable" portion could not be used for adequate resonance recovery.
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Table 2

Results of Orbit and Coefficient Determinations for 1967-14F Using

Navy and NORAD Data

Residuals*
in

Run Field Used Inclination Data Used Comments

(rms)

(10- 3 deg's)

Drag, radiation, 'i
and M coefficients

NAVSPASUR - solved from data.
SAO SE 2 (non All elements Commensurability

resonant) MJD 41303 - at 41985. Reso-
41989 nance i i"I" clear,

residuals about
0. 0010.

Same as above.
SPADATS - Resonance in I not

SAO SE 2 (non All elements seen except pos-
resonant) MJD 41302 - sibly after MJD

41936 41700. Residuals
about 0. 010.

Same as
SAO SE 2 (non3 6.83 run #1, but to Same as run #1.

MJD 42060

SAO SE 2 + 3,0 and
(23, 13) solved from Weight on I:

data Same as
4 r1.13 0.0002'. Maxi-

109 (C, S)23,13 = run #1. 0 ao ac
(-20.7 ± 1.4, -69.8 mum along trackerror: 6 .
± 1.2)

*Observed - calculated values from converged mean element trajectory
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Table 2 (continued)

Residuals*
in

Run Field Used Inclination Data Used Comments
(rms)

(10- 3 deg's)

Drag, radiation, i,
~i, M 13 1 , MI4],

M [5] coefficients
SAO SE 2 + 3,0 and solved from data.
(2.3, 13) solved from NAVSPASUR - Short period lunar

5 data 1.29 All elements terms used. Max-

109(C,S)23,13 = to MJD 42060 imum along track
(-22.0 ± 1.2, -71.8 error: 100. Cor-
S1.1) relation coefficient:

(C,S)2313 = -0.38.

Weight on I:
0. 00020.

SAO SE 2 + 3,0 and All state elements

(23, 13) solved from NAVSPASUR - except I and ra-
diation coefficient

data Inclination
6 d 1.29 fixed from solution

10 9 (C,S)2 3 13 = data only - in run #5. Corre-
(-21.2 ± 3.4, -71.3 to MJD 42060

2.4) lation coefficient

(C,S)2 3 ,13 = 0. 34.

*Observed - calculated values from converged mean element trajectory
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RESONANCE RECOVERY

The geopotential indices for this (mean) primary resonance (2 - 2 p + q= 1)

are m = 13, q = 0 and all 2 > 13 for which

2 = 2p + 1, p < 2.

Thus the 2 are all odd and any one of the (2, m) terms (13,13), (15,13), (17,13)

. . . can be recovered from the resonance in inclination on this orbit.

It is noted that the first of the side band primary resonances (q = ±1) which

are affected by the even degree geopotential term (and m = 13) have only slight

effect in this data span since w = 5. 6' /day (relatively large compared to 11/13,0

in this period). The q = -1 resonance has a period of 180 days at 4300 MJD de-

clining to 60 days at 42060 MJD. The q = +1 resonance has a period of only 40

days at the beginning of the data span, increasing to 70 days at the end. In ad-

dition, the amplitudes of these terms are of order e lq l , where e is the orbit's

eccentricity, [see Kaula, 1966, p. 37] or reduced by a factor of 0. 08 with re-

spect to the q = 0 resonance for 1967-14F.

The fact that (essentially) only a single geopotential term can be recovered

from each resonance is a consequence of the fact that only a single harmonic

perturbation is responsible for it (see King-Hele, 1973a or Wagner, 1973). The

amplitude of this term changes only as a consequence of the change in frequency

through the resonance. The fundamental amplitude (a weighted sum of the res-

onant geopotential coefficients) remains constant. The scale of this sum is

determined by the actual resonance perturbation. However, even for the same
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fundamental frequency ( .) this weighted sum is different for 4 of the Kepler

element variations (a, e and "I" have the same sum, but w, S2 and M are

distinct).

Why (physically) only 4 of the 6 sums (or amplitudes) yield independent in-

formation is unclear. It may be due to the choice of the classical Kepler ele-

ments to express the perturbations. In particular, the choice of the mean

anomaly instead of the true anomaly introduces an infinite number of frequencies

to express the effects of a single geopotential harmonic on an orbit. In some

sense this must dilute the information content of any single frequency. But in

any case, for the dragged orbits, only the inclination variation (essentially free

of drag error) has provided unambiguous recovery of resonance information.

However, recently, King-Hele (1973c) and Winterbottom and King-Hele (1974)

have shown that near circular orbits can suffer significant resonances of E2, e

and w apparently quite distinct from drag (and other) effects. A strong reso-

nance in e was also seen by Wagner (1973) in the very slow decay of the Vanguard

3 orbit. On the other hand no significant resonance of other elements on the

DIADEME 2 fragment has yet been seen, though the full passage will not be over

till late 1974.

I chose the geopotential harmonic (23,13) to absorb the inclination reso-

nance on 1967-14F and at the same time made a 5% adjustment of (3,0) to cor-

rect odd zonal model error (see Table 2, runs 4-6). The same differential

correction program was used in these adjustments as previously to reveal the
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resonance. But added weight was given to the inclination data in these adjust-

ments and additional secular accelerations were used to reduce the along track

or phase error of the resonance. Full data correction runs were made for 686

and 757 day arcs (runs 4 and 5). The inclination residuals were significantly

larger in the longer arc, possibly showing the influence of the secondary reso-

nance with m = 26. But this conclusion must wait till the passage is complete

and the smaller (higher frequency) effect can be well separated. In any case,

the (23,13) recovery is not substantially altered over the longer span. A final

run was made using the inclination data only, to confirm that the other elements,

influenced by drag, were not distorting this result. The (23, 13) recovery in

this correction (run 6) was between the values in the two full data analyses.

The solid curve in Figure 2 shows the computed resonance in inclination

from the best (most representative) results to date (run 5). The values for the

harmonic coefficients themselves are somewhat larger than Kaula's rule [Kaula.

1966, p. 98]. But this is not significant since it is only a linear sum of reso-

nant terms which is well determined.

RESONANT CONSTRAINT (LUMPED COEFFICIENTS)

Following the method developed by Gooding (1971) and elaborated by Wagner

(1973) the resonant inclination variation for 1967-14F (a = 1. 88 e.r., e = 0. 082,

I = 38.920) is determined by the lumped sine and cosine terms:
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(C,S)13 ,0 = 0. 023(C, S)1313 -0.172(C,S) 15 ,13 +0.505(C,S)17,13

-0.884(C,S) 19,13  + 1.000(C,S)21,13 -0.673(C,S) 23,13  +0.099(C,S)25,13

+0.295(C,S)27,13 -0.279(C,S)29,13 +0.018(C, S)31,13 +0.156(C, S)33,13

-0. 105(C,S) 35,13  -0. 036(C,S) 371 3

+0.085(C,S)39 ,13  -0.021(C,S) 4 1,13  + . . . (1)

The terms in this series are for fully normalized geopotential harmonics

[Kaula, 1966, p. 7]. The weights are just the fundamental amplitudes (without

the rate denominator) of the linear perturbation of the inclination due to a fully

normalized harmonic [Kaula, 1966, p. 40]. The sum of these fundamental

amplitudes (with C and S coefficients) are merely the coefficients of the cos

(013.0) and sin (0 13.0 ) terms determining the rate of the resonance variation of

the inclination. It is these two (lumped) coefficients which are actually "ob-

served" in this resonance. The reason (23,13) was chosen to absorb the effect

was because it had a high weight in (1). It also was the lowest degree 13th order

term not present in the SAO SE 2 field. Using the (23,13) weight of -0. 673, the

"observed" lumped coefficients are (best results):

109(C,S)13.0 = (14. 8 ±0. 8, 48.3 ±0. 7), (2)

with a correlation coefficient of -0. 38.

With regard to "lumped coefficients", if their perturbations can be properly

identified, the weights of their constituents can serve to extend the information

in them to any degree. Such "lumped coefficients" have been reported many

times from "shallow resonant" satellite orbit analyses [i.e., Yionoulis, 1965;
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Murphy and Cole 1968; Gaposchkin and Veis 1967; Douglas and Marsh, 1970].

One difficulty with "shallow resonant coefficients" is that except for near circu-

lar orbits, the side band resonances (i. e. , q = p1) will also be observable. They

will not be separable unless long arcs of data are analyzed spanning at least a

rotation of perigee. But if the "lumped coefficients" are well determined (and

identified), as here and in the previous 15th and 11th order analyses, they can

serve as absolute benchmarks for geopotential determinations. An example of

this use has been given by Wagner (1973) for a previously poorly observed 11th

order resonance. Here, I calculate the "lumped coefficient" for the 1967-14F

resonance from Equation (1)with a number of recent fields which are well repre-

sented by 13th order terms. The results are presented in Figure 4. The merit

of each of these fields is now immediately apparent when compared to the "ob-

served" coefficients.

DISCUSSION OF RESULTS

The "point" in Figure 4 representing the "observed." lumped coefficients

has two uncertainty circles about it. The inner one represents the formal io

uncertainty of the "best" solution. The small solution shift from the abbreviated

data analysis is also seen. The larger circle represents the uncertainty in the

lumped coefficient if terms of degree higher than 30 are ignored (as they gen-

erally are in current global solutions). This expected "truncation error" is

calculated as the root sum of squares for the neglected terms in Equation (1)

using Kaula's rule (10-5 /Q2) for the harmonic coefficients (Table 3). It is also
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Figure 4. Lumped Harmonic for 1967-14F Resonance



Table 3

Estimated Cumulative Effect on Lumped Harmonic for 1967-14F,
From Geopotential Terms

V 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

109 RSS* (all terms 2) 40.9 40.9 40.2 36.2 26.6 13. 9 5. 8 5.5 38 11.9 1.9 1.3 0.9 0.8 0.6

*Using Kaula's rule and Equation (1).



of interest to calculate the a priori variance of the total lumped coefficient, as

its square root can be thought of as a reasonable (la) value for it. Using Kaula's

rule again [over all the coefficients in Equation (1)] this value is indicated by

the circular arc centered on the origin in Figure 4.

The convergence of the series in Equation (1) is actually stronger than it

appears. The weights can be shown to decrease (on average) at least as fast as

1/V while the coefficients behave as 10 - s /V2. Comparison of the observed

lumped harmonic with its a priori standard deviation shows its value is slightly

greater than Kaula's rule would have predicted. In terms of Kaula's rule, the

formal statistics say the lumped harmonic is determined to better than 1 part

in 40.

The fields chosen for comparison with the "observed" harmonic all used

basically the same shallow 13th order resonant orbits but with different amounts

and kinds of tracking data. They all extend to at least the 22nd degree in 13th

order terms. The purely satellite data fields are GEM 5 and PGS62 (F. Lerch,

Personnal Communication, 1973 and 1974). The others are combination solutions

with surface gravimetry data. The Smithsonian fields (Gaposchkin and Lambeck,

1971; Gaposchkin, 1973) used analytic techniques for both orbit and geopotential

determination. The satellite data in these consisted only of camera and laser

observations. The fields originating at Goddard Space Flight Center employed

numerical integration to rationalize the orbital data. GEM 5, 6 and PGS-62 con-

tain significant amounts of electronic data (radar range and range rate, and
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Doppler observations) on the 13th order shallow resonant orbits. PGS 11 (F.

Lerch, Private Communication, 1974) contains only camera data for the satel-

lite observations.

As for the truncation of 13th order terms, GEM 5, 6 and SAO SE 2 extend

to (22,13), SAO SE 3 goes to (23,13), and PGS 11 and 62 include all 13th order

terms to (29,13).

Yet in spite of all these differences, the fields are clustered fairly closely

in Figure 4, showing the dominance of the similar 13th order satellite

information. The Goddard fields (with substantially more data) are somewhat

closer to the observed harmonic, but the truncation is significantly different for

them. In fact the (probable) truncation error alone would account for all of the

distance of the GEM 5 and 6 models from the observation. On the other hand

the SAO SE 2 (at the same truncation) is significantly farther from the observed

value. (Itis somewhat beyond the probable truncation error for all the terms of

degree greater than 22.) The SAO SE 3 (with 23,13 terms) is marginally closer

than SAO SE 2 to the observation but the added terms should have made a much

greater improvement still. The same situation holds (and even more strongly)

for the more recent Goddard fields (PGS 11 and 62) which extend to (29,13).

Here, no improvement is seen over the earlier GEM solutions but the truncation

error (given by the dotted circle about the observation) should be much reduced.

The simplest way to interpret these comparisons is to say that the higher

degree terms (i.e., above about 21) for this resonance are not well determined.
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The conclusion then follows that these terms will be significantly improved with

the use of the lumped harmonic (i. e., Equation (2)) for the DIADEME 2 frag-

ment. The simplest example of such use would be to add a single high degree

term to an existing field. Of course this would not be a realistic solution on

two counts. First, it would upset the 13th order ties (correlation) in the existing

field. Secondly, it would ignore the contributions of still higher degree terms.

But it does give a representative value (exact for 1967-14F) and a first approxi-

mation of the realistic numbers. Using GEM 6, I find the added (23,13) term

(C,S) to be 10 -9 (-16. 9, 0. 3) which has an rms of 12. 0x 10 -9 compared to 18. 9

x 10 - 9 for Kaula's rule.

SUMMARY AND CONCLUSIONS

A strong 13th order resonance has been observed and analyzed from U.S.

Navy Tracking Data on the slowly decaying orbit of a DIADEME 2 fragment

(1967-14F). The exact commensurability for the orbit occurred in late 1973

and the major changes due to the resonance will be over by late 1974. Never-

theless, apparently stable and well determined values of a lumped harmonic

for this resonance have been found which should significantly improve 13th order

geopotential terms to about as high as degree 33. There is fairly close agree-

ment of calculated values from recent fields with the "harmonic" observation

(within 20%). The major part of the discrepancy is probably due to poorly

known coefficients above degree 21 in these fields.

Substantial improvement of 13th order and high degree terms will be seen

with use of the lumped values (and the linear constraint) in combination solutions

with other data.
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